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A hybrid computational procedure is presented which combines the stream-function and 
integral-velocity formulations. It is applicable to unsteady two-dimensional flows about mul- 
tiple bodies. The free vorticity of the fluid is computed by a standard finite-difference 
procedure, and the bodies within the flow are replaced by distributions of bound vorticity 
over their surfaces. The bound vorticity prevents fluid penetration at the body surfaces and 
produces an irrotational velocity field which is evaluated in integral form. The free vorticity 
produces a rotational velocity field which is expressed in terms of the stream function. In this 
way, boundary conditions on the stream function are needed only on the periphery of the 
computational domain. These involve integrals over the known bound and free vorticity fields, 
and the boundary conditions are thus allowed to change with time and space as the flow 
evolves. The procedure is used to simulate the breakup of coherent eddies by a single flat plate 
embedded in a viscous boundary layer. Significant features of the unsteady flow are revealed 
by graphical presentations of the vorticity contours as well as flow visualization using marker 
particles. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

An extensive literature exists on numerical methods to predict unsteady viscous 
flows past isolated bodies. When the flow field is unbounded and two-dimensional, 
the formulation is straightforward and is commonly made in terms of the vorticity 
and stream function. The latter quantity satisfies a Poisson-type equation and, even 
for unsteady flows, its value on the surface of the body must be a constant. The 
value is usually taken to be zero. Thus the surface boundary conditions are well 
posed. 

This is not the case when there are multiple bodies in an unsteady two-dimen- 
sional flow. It is true that the stream function must still be uniform on the body sur- 
faces but, except for special geometrical arrangements, the values are different on 
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each body, and these are not known a priori at each time level. Furthermore, com- 
putational boundaries do not necessarily coincide with flow stream lines, and this 
produces additional problems. This is brought out clearly, for example, in steady- 
flow analyses based on the streamline curvature method. This is one of the earliest 
means for determining the steady inviscid flow between adjacent blades in a 
cascade. Even if the flow is assumed to be spatially periodic and the flow rate 
between blades is specified, an iterative solution is necessary because the location of 
the stream line intersecting each blade is not known in advance. For this reason, 
other methods have been developed for analyzing cascade flows, and these are 
reviewed in the article by Habashi [l 1. 

Multiple bodies produce multiply connected flow domains, and several metho 
are available for treating these flows. We are interested here only in approaches 
suitable for viscous incompressible flows. For example, the equations of mot’ 
m.ay be solved for the primitive variables of velocity and pressure. Since 
pressure satisfies a Foisson-type equation, and the pressure variation is not known 
a priori on all the boundaries, including the solid surfaces, an iterative solution 
method is usually employed. Korczak and Patera [2] have used a spectral~eIe~e~t 
method to solve for the primitive variables in a doubly-connected domain. In place 
of iteration, a pseudo time-stepping algorithm was adopted to obtain the desired 
steady-state solution. The method was used to predict the two-dimensionai flow 
produced by a rotating cylinder placed eccentrically to a stationary outer cylinder. 

As a second example, such problems may be solved using the vortici~y”ve~o~i~y 
formulation. This is a relatively new approach which has received increased atten- 
tion in recent years. The velocity formulation may be made in r di~ere~tial 
form or integral form. In the differential form, the velocity co nents satisfy 
IPoisson-type equations. Examples of this approach applied to unsteady flows in 
simply and doubly connected domains can be found in the papers by Fusegi and 

rouk [3] and Fasel [4]. A drawback to this formulation is that the values of the 
id vorticity must be known at all points of the solid surfaces. This is because the 

derivative of the vorticity appears in the Poisson equations for the velocity com- 
ponents. These wall values of vorticity are not known a priori and 
expressed using local expansions of the unknown velocity components. 
vorticity is simultaneously needed in the solution of the vorticity tr 
equation, thus coupling the implicitly nonlinear equations. Therefore, i 
methods must be employed to solve the equations at each time level. 

Alternatively, the velocity components may be expressed in integral form. The 
result is sometimes called the velocity induction la and it is this form with which 
the current authors have had the most experience. et& are given in the 
Taslim, Kinney, and Paolino [S]. An application of 
bodies in unsteady two-dimensional flows has been carri 
and Paolino [6]. In addition, J. C. Wu has made num 
integral velocity formultition over the past fifteen years. 
ex ded upon in Ref. [7]. 

adly speaking, the integral velocity formulation uses known integral 
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to the same Poisson-type equations which are fundamental to the differential for- 
mulation. Therefore, the two approaches are not conceptually different. However, 
there are important differences in the implementation of boundary conditions. The 
integral formulation avoids iteration whereas the differential formulation does not. 
Both are applicable to three dimensions as well and can be recast in terms of the 
vector velocity potential. Wong and Riezes [S] have recently used this approach to 
compute steady three-dimensional flows in multiply connected domains. It should 
be noted, however, that the velocity potential is typically not known on all 
bounding surfaces, and so iterative solutions are necessary with this approach. For 
two-dimensional flows, the vector velocity potential reduces to the stream function. 

Except for the study involving an array of cylinders [6], the integral-velocity for- 
mulation has been applied exclusively to two-dimensional external flow problems 
involving single bodies. It now apears that an important attribute of the method lies 
in its ability to handle multiple-body problems, even in two dimensions. 
Nevertheless, it does have a serious disadvantage. The execution time needed to 
compute the velocity field via the velocity induction law is long compared to 
that needed to solve the stream function equation and to compute the velocity 
components by finite-difference procedures. 

In the present paper, we present a hybrid velocity formulation which combines 
the best features of the stream-function and integral approaches. It avoids iteration 
and is reasonably fast. It has general applicability to a wide class of two-dimen- 
sional flows past multiple bodies. The method is applied here to a two-body 
problem of considerable practical importance. Specifically, we use it to predict the 
unsteady flow near a finite-length plate embedded in an unsteady viscous boundary 
layer formed along a plane wall of infinite extent. 

The choice of this flow geometry has been motivated by recent investigations into 
passive ways to reduce the skin-friction drag of turbulent boundary layers. It has 
been speculated by Hefner, Weinstein, and Bushnell [9] that the management of 
large-scale turbulence in boundary layers can be effective in reducing the skin-fric- 
tion drag on solid surfaces. Flat plates aligned with the main flow direction offer 
one means for accomplishing this. Alternatively, such plates embedded in laminar 
flows may also be effective in damping unstable two-dimensional disturbances 
which can cause eventual transition to turbulent flow. Thus the plates may cause 
the boundary layer to remain laminar for a greater distance along the wall than 
would otherwise be possible, thereby also reducing skin-friction drag. 

We demonstrate that such multiply connected and time-varying two-dimensional 
flows may be analyzed using the present hybrid approach. It is expected that large 
numerical simulations may increase our understanding of the unsteady processes 
leading to turbulent flow, as well as possible means for mechanically altering the 
turbulent structures. Indeed, such simulations have been used by Fasel [4] to study 
the stability of simply connect two-dimensional boundar layers. However, such a 
simulation is not attempted here. Rather the intent is to develop the numerical for- 
mulation in detail. Results are then presented for one flow configuration consisting 
of a single plate embedded in an unsteady boundary layer. Computations are 
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carried out sufficiently forward in time to confirm the applicability of the approach 
while at the same time revealing some interesting features of the flow field. 

2. DESCRIPTION OF THE PHYSICAL PROBLEM AND 

THE THEORETICAL APPROACH 

A schematic of the basic flow configuration is shown in Fig. 1. The charactcrist~c 
length scale is taken to be the plate length, L. The offset distance of the plate above 
the wall is S. The undisturbed free-stream velocity is hi,, and the characteristic 
Reynolds number is U, L/v. 

The plate is embedded in a viscous boundary layer of thickness, 6. There is a 
background velocity field, U,(y), and superimposed upon this are two-dimensional 
eddies which are convected toward the plate by the background flow field. 
eddies introduce a disturbance velocity field, and the task is to compute the time 
development of the complete flow field near the plate and downstream from i 
flow is started from an initial state of rest, and the coherent eddies are intro 
according to a predetermined scheme ahead of the plate across the upstream 
computational boundary. The plane wall is taken to be infinite in extent. 

The no penetration condition on the plate is enforced by distributing boun 
vorticity along the length of the plate, L. The distribution of this bound vorticity is 
such that at an arbitrary number of points, the normal velocity vanishes. This 
distribution is governed by an integral equation, which is easily derived. 

This technique of distributing bound vorticity on the surfaces of one or more 
solid bodies embedded in a viscous flow is generally valid. It was first applied by 
Schmall and Kinney [lOI to compute the unsteady two-dimensional viscous flow 

UCW 

FIG. 1. Schematic diagram of the flow configuration. 
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about a single flat plate immersed in a uniform onset flow. It is a logical extension 
of methods used in ideal-fluid analyses “of external flows and thus is not limited to 
single bodies. In the case of a viscous-flow analysis, however, the role of the bound 
vorticity is expanded and is used to determine the rate of free vorticity production 
at the solid surfaces. This is explained more fully at a later point. 

The no penetration condition at the infinite wall is enforced using image vorticity. 
That is, the flow is envisioned to extend to the lower half plane (y < 0 in Fig. 1). 
The vorticity in this lower plane has equal magnitude but opposite sign to that in 
the upper half plane. 

The infinite plane wall represents one body, and the plate is a second body. In 
this scheme the second body is effectively removed and replaced by distributed 
bound vorticity. Now the flow domain is simply connected. The bound vorticity 
replacing the plate produces an irrotational velocity field, which is evaluated in 
integral form. The free vorticity of the fluid produces a rotational velocity field. This 
is obtained from a differential formulation involving the stream function. The con- 
dition that $ = 0 is enforced on the infinite wall. Conditions on the normal 
derivative of $ at the other planes of the computational boundary are obtained 
using the velocity induction law, and their values are allowed to change with time. 
Iteration is avoided at each stage of the calculations. 

3. ANALYSIS 

Governing Equations 
The background flow is assumed to be one-dimensional and steady. Superim- 

posed onto this are perburbation velocity and vorticity fields caused by the presence 
of the plate, as well as the coherent eddy structures introduced ahead of the plate. 
We denote as U’ and v’ the x- and y-components of the perturbation velocity, and 
o’ denotes the perturbation vorticity field. Then 

u = U,(Y) + u’(x, Y, t) 

v = v’(x, y, t) 

0 = Q,(Y) + @‘(X, y, t) 

No assumption is made that these perturbation quantities are small. 
The vorticity transport equation is given by 

(1) 

(2) 

(3) 

and the continuity equation is 

(4) 

(5) -+-=o. ax ay 
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At this point, all independent variables have been rendered nondimensional using 
U,, L, and V. That is, t = t*U,/L, IA =u*/U,, y= y*/L, co =o*L/U,, etc. T 
asterisk denotes a dimensional variable, which will normally be omitted for 
convenience. The origin of the x and y coordinates is as shown in Fig. 1. 

The velocity field is first formulated in terms of the velocity induction law. 
The stream function will be introduced at a later point The expression for the 
x-component of velocity can be written as 

where p is some point in the flow, and the range of integration is over the entire 
region of non-zero vorticity. Note that this expression contains ‘i. grad $, whit 
must be included for generality. More will be said about this term later. The 
expression for the y-component of velocity is 

It is easily verified that curl, P= kw, where the curl operator is with respect to the 
coordinates at p. 

The term grad CJ~ is a purely irrotational contribution to the velocity field and 
must be included to ensure that the boundary conditions are satisfied. The princi 
velocity boundary conditions embody the adherence condition at solid surfaces. 
These are enforced in two steps. First, the normal velocity component is ~u~l~~ed, 
after which the tangential component is reduced to zero. The first step is accom- 
plished through image vorticity plus the proper specification of grad 4. The second 
step is accomplished through the proper production of free vorticity at the soli 
surfaces. 

As mentioned earlier, the requirement that u vanish on the infinite wall is enfor- 
ced using image vorticity. The enforcement of the zero penetration condition at the 
plate is accomplished by introducing bound vorticity, y, on the plate. Since this 
bound vorticity induces a purely irrotational velocity field, it takes the 
grad 4 in Eqs. (6) and (7). That is, we may set 

where FqP is the vector from yy at point 4 on the plate to any point p in the fluid. 
For this two-dimensional flow, y = &J. 

When account is taken of the contributions from the free vorticity (i.e., w) an 
the bound vorticity (i.e., y) in the ffow field as well as in the image plane below the 
plate, one has 
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~(X,~ Yp, f)= ucc +$jm jm 0(x, Y9 t) 
Y - Y* 

0 --m (x--p)*+(Y-Yp)* 

Y + Yp 
+b-x,)2+(Y+Yp)2 I 

dx 4 + & j;;,* Y(X, 9 t 1 

x (x,-xp)*+(S-);,)*+(x,-x,)*+(S+y,)* dxy c 
S-Y, S+Yp 

I 
(9) 

ep, Y,, f) = -& jm jm Mx, Y> t) 
0 --m L 

X-Xx, 

(x--J2+(Y-YJ2 

The second term in each of the brackets gives the contribution of the image 
vorticity. 

Some features are immediately obvious from these expressions. The evaluation of 
u(xP, 0, t) from Eq. (9) does not produce zero in general. However, it can be shown 
that the contribution from the vorticity of the background velocity (i.e., Q6 = 
-dU,/dy) is equal to - U, when yP = 0. That is to say that the background 
vorticity produces zero slip at the wall. However, the bound vorticity and the 
perturbation vorticity, u’, produce an “apparent” slip velocity at the wall. This slip 
velocity must be reduced to zero at each time level through the production of new 
free perturbation vorticity. This is in accordance with the discussion by Lighthill 
[ 111 and will be pursued shortly. 

Another feature worth mentioning is that u(x,, 0, t) evaluated from Eq. (10) is 
zero. Thus the image vorticity effectively produces no penetration of the fluid at the 
wall. 

To ensure no penetration of fluid at the plate (located a distance S above the 
wall), y must be specially distributed. To obtain the governing equation for y, one 
sets yP = S in Eq. (10) and sets the left-hand side to zero. There results an integral 
equation as follows: 

s 
u2 

Y(Xq, t) 
[ 

1 xq--xp 
~- 

- l/2 xq - xp (x4 - xJ2 + 4s2 1 dxq 

m cc =- s s u’(x, Y, f) 
0 -cc 

x [ 

X-Xp x-xp 

(x-x,)*+(y-s)*-(x-xxp)*+(y+s)* dxdy. I (11) 
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Note that only the perturbation vorticity appears on the right-hand side. This is 
because the background vorticity produces no vertical component of velocity. The 
form of the solution of Eq. (11) is taken up next. 

Solution for Bound Vorticity 

The perturbation free vorticity CO’ is presumed known at any given time level, t. 
Therefore, the right-hand side of Eq. (11) is a known non-homogeneous term. 

It is important to realize that the solution for y is non-unique and must contain a 
term corresponding to the complementary solution of the homogeneous equation. 
This corresponds to pure circulatory flow about the plate, and the form of the 
complementary solution can be shown to be AF(8, &)/sin 0. Here ia is an arbitrary 
multiplicative constant, which could depend on time and S, and 8 is a polar angle 
obtained by circumscribing a circle about the plate so that the plate is $oi~cide~t 
with a diameter. The polar angle is measured in the counterclockwise direction 
from the trailing edge toward the leading edge. The function F(8, S) a~~roa~~~~ 
unity as S approaches infinity. For finite values of S, this function varies moderately 
from unity, but a closed-form solution is not known to the authors. It was 
determined numerically in the present study. 

The unknown constant A must be determined from the principle of conservation 
of total vorticity. Simply stated, the integral of the bound vorticity over the 
must vanish. This ensures that the net perturbation vorticity produced at the 
is zero at all time levels, and that the pressure is single-valued on the plate, 
one has 

s 112 
ydx= J “jd6=0, 

- 112 0 

where y sin 0 = y^. Recalling that y (or y^) is composed of a particular solution to the 
complete (i.e., non-homogeneous) integral equation plus the ~ompiementa~y 
solution, one has 

Thus A can be found upon substitution of Eq. (13) into (12) and rearranging to get 

A(S, t)= - St? ljpart (0, s, t) de 
J; qe, s) de ’ 

where it is convenient to carry out the integrations in the e-plane. Note that once 
the particular solution is found and F(8, S) is known from the ~om~lerne~tar~ 
solution, then A can be found explicitly from Eq. (14) and used in Eq. (13) to 
uniquely determine the bound vorticity at each time level. The evaluations are made 
numerically and are explained in a later section. 
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Vorticity Production at Solid Surfaces 

As mentioned previously, the application of Eq. (9) does not ensure a zero-slip 
velocity at solid surfaces. The procedure is to determine this first, and then to 
reduce it to zero by the production of free vorticity at the surfaces [ll]. 

The evaluation of the slip velocity at the wall is straightforward. We thus have 
from Eq. (9) for yP = 0, 

uslip(xp, t)lwall =k jo’ j”; m’(x, Y, t) i 
2Y 

-m (x-xJ2+y2 dxdy 1 
+&jy;,2Ywi[(x -:;*+~']dx, (1% 4 P 

The evaluation of the slip velocity on the plate is slightly more involved. First, we 
set y, = SS E in Eq. (9), where E is a small distance above the plate. Later we let 
E --f 0. The integration of the term with o is straightforward. One finds that for a 
distance y above the wall, the integration of the background vorticity produces 
- U, + U,(y). When y = S and this is added to the first term of Eq. (9) (i.e., U,), 
all that is left is the background velocity, U,(S). The integral involving the pertur- 
bation vorticity, o’, is added to this. 

It remains to integrate the term with the bound vorticity, and this must be done 
with some care. Note that S - yP = --F in the first term of Eq. (9) involving y. As 
E --) 0, this integral produces -y/2. On the other hand, when yP = S - E, we obtain 
+y/2 for this integral. Thus there is a different apparent slip velocity on the upper 
and lower surfaces of the plate. The end result is 

[.“slip(xq2 t)lplate “pper= U,(S)+& jm jm 
0 -cc 

4x2 Y3 t) [ (x-x 
4 
;+;v-s)z 

Y+s 1 1 
+ (x-xq)2+(y+s)2 dxdY-p(w) 

+&jy:,y(i, 4 (i-xa;s+4s2]d~ (161 

C”sliptxq, t)l$E= C”slip(xq2 t)l~LYH’+ YCxq, t). (17) 

Once the slip velocities are determined for the wall and plate surfaces, the vorticity 
production is given by 

(18) 

The convention is to evaluate the right-hand side of Eq. (18) at time t. Also, a 
positive slip velocity on the upper portion of a surface produces negative free 
vorticity, whereas the reverse is true on the lower portion of a surface. 
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Introduction of the Stream Function 

The velocity field produced by the perturbation free vorticity is now reformulated 
in terms of the perturbation stream function, which satisfies the usual oisson 
equation given by 

a+y+a2qif --g-p ayz=-o'. 

Note that Eq. (19) also admits a complementary solution corresponding to 
V’+:. = 0. This corresponds to a potential flow field, which is already accounted for 
through the bound vorticity, y. 

The particular solution to Eq. (19) must satisfy imposed boundary conditions on 
the periphery of the rectangular flow domain. On the top boundary we require that 

+ Y+Y, 
(x-xJ2+(y+yJ2 dxdy9 1 

where (xP, y,) is confined to the top boundary. On the left- and right-ban 
we have that 

where (x,, y,) is now confined to the sides of the domain. On the bottom (i.e., wall) 
we require that I/& = 0. Once the stream function equation is solved subject to these 
boundary conditions, we set 

4xp Yp, 2) = WY,) + (g), +jy2Yc% t) 

[ 
S-Y, S+.Y, 

x (x,-x,)2+(s-y,)2+(x,-x,)2+(s+y,)z 

A similar expression can be written for the vertical component of velocity. 
However, it is convenient to find it from the continuity equation once U(X, y, t) is 
obtained. Thus 

where the boundary condition u’(xP, 0, t) = 0 has been used. 
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4. NUMERICAL FORMULATION 

A complete description of the computational domain is given in the section 
dealing with the numerical parameters. A portion of the domain near the plate is 
shown in Fig. 2. The plate is positioned at y = 1, and it covers the range 
-0.5 <x GO.5. The undisturbed background flow is confined to the region 
0 < y < 2. For purposes of evaluating the integrals appearing in Eqs. (1 l), (15), 
(16), (20), and (21), ‘t 1 is assumed that the perturbation free vorticity, w’, is zero for 
all x and y > 4, and for all y and x < -4 and x > + 12. In the solution of Eq. (4), it 
is assumed that aco’/dx = 0 at the downstream boundary (i.e., at x = 12). 

The grid is relined near the wall and the plate in the transverse direction, and 
near the leading and trailing edges in the streamwise direction. There are 20 fluid 
cells in contact with the plate. 

Solution for the Bound Vorticity 

The plate is represented by 80 discrete points distributed along its length. These 
80 points are obtained by first circumscribing a circle around the plate. Let 
A0 = n/80. The first point is located on the circle at an angle of Al3/2 from the 
trailing edge (x = + 0.5). The remaining points are spaced at intervals of AB on the 
circle. The points and the intervals of constant A6 are then projected onto the plate. 

The solution is carried out in polar rather than Cartesian coordinates. That is, we 
solve for the auxiliary function f(e), and then from this we obtain y = y/sin 0. In this 
way, the singularity is taken care of at 6’ = 0 (i.e., at the trailing edge). 

The governing equation for y is Eq. (11). The right-hand side is first evaluated at 
each of the 80 vortex points for a known perturbation vorticity field at some time, t. 
The right-hand member will be zero at t = 0 +. It is assumed that fj(f3) is uniform 
over a plate interval corresponding to ABi. For a given vortex point, p, the left-hand 
side of Eq. (11) is integrated exactly. It is important to take into account the 

FE. 2. Computational domain near the plate. 
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improper integral over the interval containing p, for which the Cauchy principle 
value is taken. 

Recall from an earlier section that the solution for y^ is non-unique. Thus the par- 
ticular solution to the complete set of equations is also non-unique. This means that 
one value of the 8Oy,‘s can be selected arbitrarily. This is true for the complemen- 
tary solution as well, since it is non-unique to within a multiplicative constant. For 
both the complementary and particular solutions, we set the value of y^ nearest t 
trailing edge to unity. This degree of arbitrariness is removed later once the conser- 
vation of total vorticity is enforced according to Eq. (12), and the constant, A, is 
evaluated using Eq. (14), where it is recalled that F(8, S) appearing in the eq 
is the complementary solution obtained with one of the values of f assig 
unity. The integrations are carried out assuming that jparf and F(‘(e, S) are piecewise 
uniform over each of the intervals A0. 

Solution for the Free Vorticity 

Each term of Eq. (4) is first integrated over a fixed Eulerian control volume of 
cross section AX dy and unit depth. The various terms are then integrated with 
respect to the time over the interval t to t $ At. For this we use the explicit (Euler} 
time method. If k denotes the time index (i.e., t = k At, t + At = (k + 1) At), then 
representative storage and transport terms can be written as 

(24) 

In Eq. (25) we have used the notation that [A, B] is the greater of A or 
giving the usual upwind treatment of convection. The quantities xCi and yCj denote 
the coordinates of the control faces of the control volume. Refer to Fig. 3a for 
specific nomenclature, from which it is seen that the node points (i, j) are place 
the centroids of the rectangular control volumes. 

The diffusive transport term must be modified when a control volume has one of 
its horizontal faces in contact with a solid surface. Suppose that the top of the 
control volume contacts the bottom of the plate. Then the diffusion of vorticity 
across the top of the surface of the control volume in time Q t has to be equated to 
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FIG. 3. Node arrangement in the computational domain: (a) near the fluid cells, and (b) used in the 
nine-point interpolation of the stream function. 

the vorticity production at the solid surface. This involves the apparent slip velocity 
on the lower plate surface, as obtained from Eqs. (16) and (17). That is, 

(27) 

where use has been made of Eq. (18), and the order of integration has been 
interchanged. 

Recall that there are 80 values of xg at which the slip velocity is known (i.e., one 
for every bound vortex point), and there are only 20 fluid cells in contact with the 
plate. This means that some fluid cells have several vortex points distributed over a 
face. For purposes of the numerical integration of the term on the right-hand side of 
Eq. (27), the slip velocity was assumed to vary linearly between points. On the wall, 
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the slip velocity was evaluated at the center of each bottom control face. The same 
Pinear variation was assumed. 

Solution for the Stream Function 

If we apply the circulation theorem to a finite control volume in the e 
numerical analog of Eq. (19) is obtained. Upon simplification, one has the final 
equation 

where 

c=l +AYjtAYj-l +dYj)+AYjCAYj-l +AYj)+(AYj-l +AYj) 
AXi(AXi + Axj+l) AXi(AXi + AXi- 1) (AJ'j + AYj+ 1) 

(30) 

E= -AYj(AYj-1 +AYj) 
Ax,(Ax, + Axi, 1) (32) 

F= -AYj(AYj- 1 + AYj) 
Ax,(Ax, + AXi- 1). 

(331 

The foregoing equation applies at any interior node for which the control volume 
does not lie adjacent to a boundary. 

Recall that the boundary conditions on the sides and top of the domain are given 
by Eqs. (20) and (21) where the right-hand sides of the equations are considered to 
be known. These will be given the symbols uT, - uL, and - II~. Consider first the 
left-hand (i.e., inflow) boundary. Let (x,, y,) be the node (i- 4, J) as shown an 
Fig. 3a. Then 

a*’ 
( 1 ax i~l,j = -%. 

To second-order accuracy we can write 

w 
( 1 ax 

r4*:,j-~I+l,j-311r:-l,j 
i- l,.j 2Ax 

from which we obtain 
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where Ax = Axiel = Axi = Axi+ i next to the boundary. The corresponding 
expression on the right-hand boundary is 

*i+l,j = 
-2 Axv, + 4y& - I#/- l,j 

3 (37) 

For the top of the boundary, we use the simple first-order scheme. This is necessary 
due to the solution algorithm adopted to find *:,j, which will be discussed in a later 
section. One obtains for the top row of nodes 

tii,j+l =$i,j++AY. (38) 

The enforcement of the boundary condition at the wall is treated next. It is 
recognized that the wall coincides with the horizontal control face between nodes 
(i, j- 1) and (i, j) in Fig. 3a. Along this face, $:+ must be zero. We 
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points for the interval dxi. Each kernel was integrated exactly over each strip of 
height Ayj. The results were then summed according to the weighting scheme used 
in the Gauss quadrature formula. This procedure resulted in one geometrical 
coefficient for a cell Axi A yj and a point (x,, y,). When the cell was far from a 
point (i.e., separtion distance greater than lO(Ax, Ay,)“‘), the kernel was treate 
constant over the cell. The coefficient was thus taken to be the value of the kernel 
evaluated at the central node point multiplied by the area of the cell. 

A similar scheme was used for the bound vorticity. Xntegrations of f were perfor- 
med with respect to the polar angle, 8. The value of y^ was taken to be constant over 
an interval dej, and 20 Gauss points were used. For large separation distances, the 
geometrical kernel was treated as being constant. 

In this way geometrical coefficients were computed for the perturbation free 
vorticity and the bound vorticity. Symmetry of the fluid cells about x = 0 for 
-4.0 < x < + 4.0 was taken into account to red.uce the number of coe~c~e~ts 
needed. The coefficients were calculated once and for all and stored for later use. 

observe that with this present method, the slip velocities on the wall a 
are still needed to find the vorticity production. The perturbation velocities 
by the bound vorticity are also computed. These aspects are unchanged from the 
usual integral formulation. The real computational saving comes in ~va~~ati~g t 
perturbation rotational velocity at vertical cell faces. Rather than applying t 
velocity induction law for each of these points, only the tangential cities 
induced at points on the sides and top of the domain are needed. The per 
rotational velocities at interior points are obtained from the stream functron, 
solution for which is direct (i.e., noniterative) and only involves the solution of 
algebraic equations. Thus the computational time is greatly reduced. ~~~the~rno~e, 
the linear calculations are easily vectorized for fast execution using array 
processors. 

As a final note, the evaluation of the transverse velocity from Eq. 
obtained using a simple quadrature formula. If n denotes the number of 
above the wall, then 

where only the perturbation velocities appear. 

5. DESCRIPTION OF THE TEST PROBLEM 

The background velocity field, U,(y), is taken to be the Blasius profile for 
laminar flow on a flat plate with zero pressure gradient. Strictly speaking, U, and b 
are functions of x, which is measured along the wall in the fiow direction. 
According to Fig. 1, the origin of coordinates is taken to be on the wall below the 
center point of the plate. Therefore, let x’ be the streamwise distance measured fro 

581/78/Z-10 
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the virtual origin of the Blasius boundary layer. For this profile, one has 6/x/g 
6/( U, x’/v)“~. Then d/L = 6[(x’/L)/( U, L/v)] ‘I2 For the present study, we select . 
6/L = 2 and U, L/v = 1000. Therefore, one obtains from the previous expression 
that x’/L = 111. That is, the virtual origin of the boundary layer is more than 100 
plate lengths upstream of the region of interest. As will be explained more fully 
later, the flow domain of interest extends slightly ahead of the plate and covers 16 
plate lengths in the streamwise direction. Over this domain, the boundary layer 
grows only 7%. This is a low-order effect, and therefore the variation of 6 and U, 
in the streamwise direction is neglected entirely in this work. 

The other quantities of interest are the vorticity of the background flow and 
the relative distance y/L. One begins with the boundary-layer approximation 
52, = -dU,ldy, where now Ub is considered to be a function of I?, and 
vl= (Y/X’)(UcoX’/V) . ‘I2 Recall that U, = U,f’(q), where f’(q) is the derivative of 
the dimensionless stream function. Clearly, 0, = - U,f”(q) dq/ay, from which 
QbLIUcc = -f “(rl)c(x’/LY(~couv)l -Ii2 is the dimensionless background vor- 
ticity. From the foregoing expression for 6/L, [(x’/L)/( U, L/v)] ‘I2 = f. Therefore, 
Q6 L/U, = - 3f”(r). One can also show that ye = (y/L)[(x’/L)/( U, L/v)] -‘12, from 
which y/L = q/3. When q = 6, then y = 6, and b/L = 2 as required. 

The values of r,f’(r), andf”(q) are given in tabular form in Schlichting [12]. In 
practice, it is the value of y/L which is specified in the calculations. From this, v is 
obtained, and the values of f’(r) and f”(q) are obtained by interpolation, if 
necessary. 

Superimposed onto the background flow are perturbation velocity and vorticity 
fields caused by the presence of the plate, as well as the coherent eddy structures 
introduced ahead of the plate. Eleven different eddies were specified to enter the 
upstream flow boundary over the total elapsed time interval of 0 < t < 10. For 
t > 10, the eddy pattern repeated itself. 

A schematic of the eddy pattern is shown in Fig. 4a. The initial vorticity strengths 
are given in non-dimensional form for each eddy. These were selected arbitrarily. 
One can envision that this pattern moves undistorted to the right with the free- 
stream velocity, U, . The computational zone is just to the right. Therefore, this 
pattern can be supposed to exist for a distance of ten plate lengths upstream of the 
inflow boundary, and it moves as an ensemble until the outline of an eddy just 
touches the inflow boundary. After this point, the vorticity of the eddy, plus the 
background vorticity, convects into the domain with the local fluid velocity. 

Since the grid is rectangular and the eddy is taken to be circular, its shape could 
only be approximated. An example of this is shown in Fig. 4b for the third eddy 
from the right. The eddy spans vertical layers j = 7 to j = 17. The diameter is 0.7245, 
and the center is at y = 0.576 and I, = 2.30. The area of the approximated eddy 
equals that of the circle. The eddy vorticity is assumed to be uniformly distributed 
over its area. 

The vorticity of the eddy plus the background flow enters with the local velocity 
at each level j according to a certain time schedule. Because the eddies are assumed 
to move toward the upstream boundary at uniform velocity U,, and this velocity is 
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DISTANCE AHEAD OF UPSTREAM BOlJNDARY 

FIG. 4. Schematic diagram of eddies: (a) pattern convected into the computational domain, and 
(b) representation of the third eddy from the right. 

used to nondimensionalize the time, their nondimensional locations ahead of the 
upstream boundary are equivalent to delay times. For example, suppose j = 10, and 
we are concerned with vorticity entering the grid from eddy number 3. For j= 10, 
the length of the rectangular area is 0.6865. The center of the eddy is at 1, = 2.30. 
Therefore, vorticity from this eddy is added to the background vorticitt at j = 1 
t, < t < t,, where t, = 2.30 - 0.686512, and t, = 2.30 f 0.6865/2. 

Recall that the plate Reynolds number is set to 1000. Since the velocity boun- 
dary-layer thickness is twice the plate length, the Reynolds number based on the 
boundary-layer thickness is 2000. If the critical Reynolds number is taken to be 
5 x lo*, based on the distance from the leading edge of the plane wall, one finds that 
i um slv )transition = 4243. Thus the assumption that the background flow is 1 
is justified. On the other hand, the limiting stable Reynolds number for a 
velocity profile is often taken to be 520 [12], where the length is based on the 
displacement thickness. In terms of the velocity boundary-layer thickness, the 
limiting stable Reynolds number is 1811. Thus the background flow would be 
expected to be unstable to small disturbances but not yet be undergoing transition 
to a turbulent boundary layer. 

The length-scale of unstable disturbances is between approximately 6.5 and 13 
boundary-layer thicknesses. The length scales of the eddies chosen for 
study are quite a bit smaller than this. They range from approximately 
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boundary-layer thicknesses. Therefore, disturbances caused by them are expected to 
decay rather than grow. In these respect, the simulation is neither of a turbulent 
boundary layer nor of one which is undergoing transition. However, that is not a 
major concern here. The intent is rather to show that the present formulation and 
numerical techniques can handle this class of flows. 

6. NUMERICAL PARAMETERS AND COMPUTATIONAL PROCEDIJRE~ 

Most of the important features of the computation domain are apparent from 
Fig. 2, which shows the symmetrical region nearest the plate. There are 11,200 fluid 
cells in all. There are 80 cells in the vertical direction and 140 cells in the streamwise 
direction. 

The cell dimensions were first determined on the plate of unit length. First, 20 
points were located over the unit interval according to the scheme in the 20-point 
Gauss quadrature formula. Control faces of fluid cells were then located midway 
between these points. This produced 20 cells with a size distribution which was 
symmetrical about x = 0, and which allowed for the clustering of cells near the plate 
leading and trailing edges. The same distribution was used in the fluid region above 
and below the plate, as well as ahead of and behind the leading trailing edges. 
Outside the range - 1.0 <x 6 1.0, the spacing was made uniform, and Ax= 0.12 
until x = 24.0. For x > 4.0, the horizontal spacing was set to 0.16. Above the plate, 
cell dimensions were made symmetrical to those below the plate, but for five cells 
only, rather than the usual ten. Beyond this point, the spacing was made uniform 
with Ay = 0.0517. 

The maximum time step was selected to be At = 0.01. This was sufficiently small 
to render the solution to the vorticity transport equation stable for most of 
the computations. The stability was checked each time before the solution was 
advanced one time level, and if necessary, At was reduced by 10% of the current 
value. The At was never smaller than 0.0081. 

It is of interest to compare the present computational grid and time step with 
those used by Fasel [4] in his simulation of the unstable growth of external distur- 
bances in a boundary layer. His parameters were scaled in terms of the boundary- 
layer thickness, the disturbance wavelength, and the disturbance time period. Let us 
assume that the disturbance wavelength in the present study is equal to a typical 
eddy diameter, which is of the order of 1 plate length. Suppose further that the dis- 
turbance moves at the free-stream velocity. Then his increments are equivalent to 
Ax = 0.10, Ay = 0.0833, and At = 0.05. 

The transverse spacing in the present grid is much liner overall, and it is 
especially refined near the solid surfaces, where new vorticity is produced. The 
smallest increments are Ax= Ay = 0.0107. The maximum spacing of Ax= 0.12 
ahead of the plate is considered to be satisfactory for resolving the eddy patterns 
once they enter the domain and are distorted due to diffusion and local shearing. 
The prescribed circular eddies range in size from 0.5 to 1.2, with the majority 
exceeding 0.75 in diameter. 
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The present time increment is much smaller than needed to resolve the tern~~~a~ 
changes in the flow. It was chosen to be approximately equal to the diffusion time 
associated with the smallest lateral increment next to the plate. A o~e-dirne~s~~~~~ 
model shows that A y2/4v At z 3. This prodcues the non-dimensional criterion t 
A y2/At z 12/Re,, or finally At 2 0.0095. 

The solution algorithm used to calculate il/;j is based on the stabilize 
vector propagation (SEW) method as described by Madala and McDonal 
kt is an extension of the scheme described by Roache [14]. 

Basically one begins at the top of the computational domain with j = N. Equation 
(38) is used to replace I+!&+~ in Eq. (28), and Eqs. (36) and (37) are used adjacent 
to the sides of the domain. The result is an expression for Ic/;N- i in terms of I&- l,N, 
tK,NV tK, I,N7 and other known quantities. If values for the stream function along 
this top row of nodes (i.e., for j= N) are given arbitrarily, then one can extend t 
solution to the next lower row of nodes (i.e., to j = N- 1). This is done untiI t 
nodes are reached at the wall, and the stream function there is calculated 
Eq. (39). Had the initial distribution for $’ along j= N been correctly given, t 
$;,, would be zero. The departure of rl/:+ from zero is a measure of the error, and 
one can correct the guess for $’ along the top row of nodes according to a 
systematic procedure. In this way, the correct distribution a.t j = N can be deduced, 
and the true values for the stream function over the entire field can be calculated. 
This is a direct solution method which avoids iteration. 

This direct method fails when the field is large. This is because the error 
introduced at the top row of nodes will eventually grow until the solution is 
meaningless. Therefore, the solution has to be stabilized by subdividing the vertical 
extent of the domain into subregions or blocks. A direct measure of the error can be 
obtained, and so subdivisions proceed until the error is acceptable. In this work, 
fourteen blocks were used. The maximum error at the wall was 1.1 E - 11, and most 

were O(E- 15). 
Having obtained the stream function, it remains to obtain the velocity com- 

ponent, a$‘lL?y. Since $’ is computed at node points, the usual expression given by 
w:,,, 1 - ~:,j)/O.S(Ayj + Ay,, r) gives a velocity tangential to the top of the control 
volume. The velocity desired is perpendicular to vertical control faces between node 
points. These can be found by linear interpolation of the tangential components, 
but an entirely different procedure was followed here. 

A biquadratic formula was used to interpolate the stream function between nine 
adjacent node points. To illustrate the procedure, consider the nine points shown in 
Fig. 3b. There is variable horizontal and vertical spacing. Then $’ within the 
nine-point region can be interpolated by 
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N (X)JX--lw-l -A*) 1 hl(hl +u 
N2(x)= -X(X-hhl -h,) h h 1 2 

Ndx) = x(x-h,) 
m-h +A,) 

(42) 

(43) 

(44) 

and similarly for N,(y), N,(y), and NJ(y). To obtain (13$‘/dy)~-~,~,~, for example, 
we first differentiate the right-hand side of Eq. (41) with respect to y. Then the 
values x = xCi -xi- I and y = y, + 0.5 dyj - yj- I are substituted into the 
expression, along with h, = xi --.x-r, k, = yj - yj-r, etc. 

It must be realized that a choice exists when specifying the nine points used in the 
interpolation procedure. For, example, the vertical control face could be in the 
relative position between points 4 and 5 in Fig. 3b. Alternatively, the array of nine 
points could be shifted to the left, such that that the relative position of the same 
face is between points 5 and 6. Each choice yields a slightly different result for the 
horizontal velocity component. The actual velocity used in the calculations was the 
average of these two values. This ensured that the perturbation outflow velocity 
from one control volume exactly equaled the perturbation inflow velocity to the 
control volume immediately downstream from it. 

We close this section with a description of the overall computational procedure. 
The flow is initiated at t = O+. There is only background vorticity in the flow 
covering the computational domain. Immediately, there is an apparent slip velocity 
along the plate given by ( Usiip)igTz = (U,,i,)~~~ = U, (y = 1). These apparent slip 
velocities form surface boundary conditions along the plate for the vorticity 
transport equation. The vorticity throughout the entire field is calculated. 

Note that the vorticity obtained in this first step includes the background plus 
perturbation vorticity. This is the case for all calculations of the vorticity field. Also 
the vorticity is convected by the total velocity (background plus perturbation). 

To obtain the perturbation velocities, however, we need only the perturbation 
vorticity, 0’. This is obtained next by subtracting Q,(y) from the vorticity field. 
Now the boundary values for the perturbation stream function are obtained 
from Eqs. (20) and (21), following which II/’ is calculated. One contribution to the 
x-component of perturbation velocity is next obtained from @‘lay everywhere in 
the field. 

It remains to calculate y plus the perturbation velocities due to the bound 
vorticity. First, U’ is used to calculate the right-hand side of Eq. (ll), after which 
the equation is solved numerically to give y(x,). Finally, the contribution to the 
x-component of perturbation velocity due to y is obtained from the integral in 
Eq. (22). The y-component of the perturbation velocity is then obtained from the 
continuity equation, Eq. (23). This completes one cycle of the computations. 
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To begin a new cycle, the previously obtained values for w’ and y are use 
compute new apparent slip velocities at all solid surfaces from Eqs. (15), (16) 
(17). These form new boundary conditions for the vorticity transport equation, and 
so on and so forth. With each integration of the vorticity transport equation, the 
conditions at the upstream boundary are checked to see if eddy vorticity is ready to 
enter the domain. If not, then background vorticity is convected in. Otherwise the 
eddy vorticity is added to the background value and the total is allowed to enter 
the domain. 

The computations were performed on the CDC-STAR computer at the NAS 
Eangley Research Center. All of the results shown in the next section were obtained 
in 2.66 CI’IJ h. Altogether, 1760 time steps were executed. 

7. RESULTS AND DISCUSSIQN 

The primary results are presented in the form of vorticity contours at various 
instants of time. In addition, a sense of the flow development is provided by particle 
patterns obtained using the marker and cell technique described by Warlow an 
Welch [ 151. It is emphasized that only the visualization technique was used herein 
and not the solution method for the flow field. 

FIG. 5. Vorticity contours and marker particles at 1= 4.25. 
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The early-time plots are grouped such that the contours of constant vorticity are 
shown above the particle patterns. The vorticity contours cover the entire com- 
putational domain, whereas the particle patterns are shown in the vicinity of the 
plate only. This provides a better resolution of the particles. The vorticity contours 
are for the perturbation vorticity only and are for the values -0.05, -0.10, -0.20, 
-0.25, -0.30, -0.50, -1.0, +0.5, and +l.O. 

Figure 5 shows the flow field at t = 4.25. Ahead of the plate, there are remnants of 
four eddies, all with negative vorticity. Above the plate, there is a thin boundary 
layer with concentrated negative vorticity, and below the plate a boundary layer is 
developing with positive vorticity. The wake of the plate extends to nearly x = 5.0. 
Notice that perturbation vorticity has appeared adjacent to the wall. For 
- 4.0 < x 6 - 0.5, there is positive vorticity along the wall. This means that the flow 
has been retarded, and the skin friction is less there than in the background flow. 
Below the plate and extending to x = 1.0, negative vorticity has appeared. This is 
due to the local acceleration caused by the thickening boundary layer below the 
plate. Here the skin friction is greater than that in the background flow. The con- 
tours formed by joining the particles shown in the lower portion of Fig. 5 do not 
coincide with stream lines in this unsteady flow. However, one can see that the flow 
field ahead of and around the plate has been disturbed. Initially all the flow 
markers were arranged uniformly over the flow field. 

FIG. 6. Vorticity contours and marker particles at 1= 6.85. 
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It is evident from Fig. 6 that at the later time t = 6.85, the eddies have merged 
with the boundary layer on the top of the plate. The region of negative vorticity 
below the plate next to the wall has diminished in size, and only one closed contour 
is visible. The skin friction there has been reduced relative to the value at earlier 
times. The particles in the outer flow above and behind the plate have moved closer 
to the wall, but there has been a general upwelling of particles away from the wall 
behind the plate. Probably the skin friction has been reduced at the wall, but a 
vorticity contour is not present because of the apparently low values which exist 
there. 

As seen for t = 8.14 in Fig. 7, the perturbation vorticity of the eddies and wake 
has traveled approximately eight plate lengths, which is in accord with the elapsed 
time. The eddy vorticity does not appear to penetrate the region directly below the 
plate, although it is prevalent below the elevation of the plate in the upstrea 
region. This is due to the fact that the positive vorticity of the boundary layer 513 
the underneath side of the plate is much stronger than the eddy vorticity. Thus 
when they merge, they combine to give a net positive vorticity. The vorticity of the 
eddies and the boundary layer above the plate are of the same negative sign, and 
thus they reinforce one another. The particles of Fig. 7 show a fine-scale e 
tern in the wake region generated by the plate. Furthermore, the negative vortieity 

FIG. 7. Vorticity contours and marker particles at i = 8.14. 



402 KINNEY, TASLIM, AND HUNG 

adjacent to the wall directly below the plate has disappeared. This indicates that the 
enhanced skin friction there at earlier times has been reduced, as has the negative 
(i.e., favorable) pressure gradient. Probably more of the flow is passing over the 
plate rather than between it and the wall, relative to the undisturbed flow. 

For t > 8.14, only vorticity plots have been obtained. These are shown in Fig. 8. 
It is interesting that at t = 10.73 and 12.03, the vertical pattern characteristic of “cat 
eyes” is swept over the leading edge of the plate with little distortion. However, at 
the last time shown of t = 14.61, the pattern is completely obscured. Clearly the 
plate is acting to break up the coherent eddies at the same time it is preventing 
them from penetrating the region close to the wall. 

FIG. 8. Vorticity contours at various times: (a) t = 10.73; (b) 1 = 12.03; (c) t = 14.61. 
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8. CONCLUDING REMARKS 

A method for computing the two-dimensional flow past two or more surfaces has 
been proposed. It combines aspects of the stream-function and integral-velocity 
formulations. It requires that all the surfaces interior to the flow be replaced with 
bound vorticity of such strength and distribution that the fluid does not penetrate 
the surfaces. The resulting integral equations are of a form found in potentiai- 
applications for the same surface arrangements. Therefore, the solution prope 
are often well known. The only boundary conditions for the stream function occur 
on the periphery of the computational domain. In the most general case, these are 
conditions on the normal derivative of the stream function and are posed in terms 
of integrals over the free vorticity field. Thus the boundary nditions are allowed 
to change with time and space, as dictated by the evolving w field. This feature 
allows the computational zone to be no larger than necessar cover the vorticity 
fields. Thus it need not extend appreciably into the disturbed irrotationai part of 
the flow. 

In treating time-dependent flows, it is expedient to avoid iteration in order to 
obtain the flow field at each new time level. That is the major attribute of the 
present formulation. One version of a direct solver was used in the present work 
compute the stream function, but other procedures could be applied as well. T 
point is that a great deal of development work has been done in recent years to 
refine and improve techniques for solving the stream-function equation These need 
not be abandoned simply because there are multiple surfaces within the flow. 
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